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INTRODUCTION 

IN PAPER I of this series it has been shown that 
the conventional treatment of heat transfer in 
granular beds is not adequate for beds of textile 
fibres [l]. An alternative treatment is now 
examined which takes account of irregularities 
in the structure of the bed, and which in some 
respects gives results in closer agreement with 
experimental observations. 

The situation considered is that of heat 
transfer between a semi-infinite slab of stationary 
fibres, and a stream of air which is forced through 
the assembly by an applied pressure. 

SIMPLEST CASE 

The most simplified model which is useful for 
later reference is as follows : 

(1) The inter-fibre distance is small enough 
compared with the bed dimensions to allow 
the use of differential calculus. 

(2) Heat capacities and densities of the air and 
the fibres are independent of temperature over 
the range considered. 

(3) Heat transferred by conduction in the air in 
the direction of flow is negligible compared 
with that transferred by convection. 

(4) The bed density and mean air velocity are 
uniform throughout the bed on any scale 
larger than a few inter-fibre distances. 

(5) Heat transfer between air and fibres is so fast 
that the air and fibre temperatures are almost 
equal in any vicinity. 

Hence : 

aT aT 
Soax=(C+ Slat. 

In most cases of interest, S + C, and the 
equation becomes 

t3T aT 
sv ax + c -27 = 0. (11 

The solution of this differential equation, with 
boundary conditions given by T(o, t) = T,(t) is 

where u = ‘g; (2) 

i.e. any temperature pattern (signal) imposed on 
the boundary is propagated unchanged down 
the bed with velocity U. 

The two kinds of input which we wish to 
analyse are (a) step-function (b) sinusoidal. 

In the former case let 

then 

T(x,t)=AU t-E. 
( 1 

In the latter case T,(t) = sin wt. 

then 

Consider a small volume element: then heat 
which is a progressive wave of wavelength 

transferred to volume in any small time interval 
= heat gained by (textile + air> in that time. 

/\ 0 = 2z 
w’ 
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LOCAL HEAT TRANSFER 

Previous treatments of granular beds (for 
example, that of Ledoux [2]) differ from the 
above simple case in that assumption (5) is 
replaced by a more realistic assumption. An air 
temperature T,-l is introduced, in genera1 
different from the fibre temperature T,, but 
related to it at any point by the heat-transfer 
equation 

where h is the heat-transfer coefficient per unit 
volume of bed. 

The resulting differential equation in 7;~ is 

and this equation becomes identical with 
equation (1) if h is infinitely large. 

As shown previously [I] the incorporation of 
a finite value of h leads to the attenuation of a 
sinusoidal signal, and also to an increase in the 
wavelength from the value X, of the idealized 
model. However, these effects should be small 
for beds of textile fibres. This is demonstrated by 
Table I which shows the theoretical results for a 
range of air velocities and periods, the heat- 
transfer coefficient being assumed to be that 
applicable to cylinders in an airstream [3]. 

T~lhlc I. Calculated effect of finite heat-tramj2r coq#icient 
on sinusoidal temperature inpur 

Period Air velocity Fractional increase Attenuation 
(s) (cm/s) in wavelength after 15 cm 

_-._ ~_.._~~__.. . - 
6 15 0moo9 0.81 

20.3 71 0WO008 0.98 
20.3 49 0~00001 I 0% 
20.3 31 0mOO14 0.93 

31 12 omOOO4 0.99 
31 52 00XKIO5 OW 
31 23 00IOO07 0.96 

hl 58 0~00000 I I 0.997 
61 38 0xKmOO14 0.99 
6 I 21 omOoo2 0.99 

Bed of 18.5 p terylene fibres. 

However, experiments [I] show that a step- 
function input signal is broadened and a sine 
wave is attenuated by passage through the bed to 
a much greater extent than the calculations in 
Table, I would suggest. 

A new model is now esamined in which 
account is taken of inhomogeneities in the bed 
by discarding assumption (4), of the ideal case. 
However, in the interests of simplicity, assump- 
tion (5) is restored, since Table 1 shows that for a 
bed of fine textile fibres !z is effectively infinite fat 
signals of period greater than a few seconds. 

INHOMOGENEOUS BED 

C and I’ are now assumed to vary from point 
to point, though not independently, since the 
air velocity tends to be smaller in dense regions. 
The air flow will have some of the features of 
turbulence because of the random variation of 
air velocity with the space co-ordinates. However, 
the flow is assumed to be laminar. and steady in 
time. The flow pattern will not depend on the 
velocity of the incoming air. 

It is further assumed that the bed is homo- 
geneous on a macroscopic scale, in the sense 
that it may be subdivided into smaller volumes. 
which will be identical in statistical properties. 
This means that if the results obtained from the 
model are to be applied to a finite bed. then the 
typical dimensions of clumps or other irregulari- 
ties must be considerably smaller than the bed 
dimensions. 

At the other end of the scale, the present 
model does not attempt to describe the effects of 
different local packing of the fibres. so that the 
irregularities considered are much larger than 
inter-fibre distances (about 5 ,’ IO -Z cm). This 
means that I’ and C may be regarded as con- 
tinuous functions of position. The justification 
is that the irregularities of smallest length scale 
are expected to have least effect on the behaviout 
of the bed. 

BEHAVIOUR ON A STREAMLINE 

Let P be a point somewhere in the bed. and 
let s be the distance from the boundary to P. 
measured along the streamline passing through 
I’. 

Then we assume that the idealized equation ( I ) 
holds along the streamline. i.c. 
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aT aT 
sv~+cT&=o, 

where the local values of v and C are used. 
At this stage we assume that lateral heat 

conduction is negligible. The effect of this 
assumption will be examined later. 

Then any disturbance is propagated along a 
streamline with a changing velocity u given by the 
value of OS/C at each point. In the succeeding 
analysis we consider the effect of a variation 
throughout the bed of the signal velocity 
US/C. The distribution of this quantity cannot be 
obtained from the distribution of packing density 
without considering the negative correlation 
between v and C, which is not attempted here. 

The time T taken for a signal to travel from the 
boundary to a point P is given by the integral 
along the streamline 

Pds PC $-Z ---_= s s OU 
-F ds. 

01u 

If the flow is laminar, the velocity at any 
point is proportional to V’, the velocity of the 
air entering the bed, i.e. v = kV, and k is 
constant at each point. 

Then 
1 I-P r 

T=_; oSk J ” ds. 

Denote the line integral in the expression by 1, 

then T = l/V. In the air upstream from the bed, 
signals move with the air speed V. Hence I may 
be regarded as the equivalent path length (in air) 
of the path considered in the bed. 

The temperature Tat any point in the bed will 
now be determined by its equivalent path length 
from the boundary, and will be equal to the 
temperature at the boundary at a time l/V 
seconds earlier. 

i.e. (5) 

where T,(t) is the input temperature. 

DISlXIBUTION OF PATH LENGTHS 

If a streamline is divided into consecutive 
segments, then the equivalent path lengths of 
adjacent segments will be independent of each 
other, provided that each segment is longer 
than the typical dimensions of irregularities in 
the bed. 

Let the bed be divided into section by planes 
parallel to the boundary and separated by a 
distance u, large enough for the above condition 
to hold (see Fig. 1). Let Aa be the equivalent 
length of a typical segment of a streamline, 
lying between consecutive planes. 

Then X, will be randomly distributed with a 
frequency functionf(a, I). That is, the probability 
that h, lies between I and 1 + dl is f(a, Z) dl. The 

Streamline of Total Equivalent Length X, 

FIG. 1. Longitudinal section through bed. 
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variability in A, will be due partly to the varia- 
tion in the geometrical lengths of paths, and 
partly to the variation in speed with which a 
signal travels along a streamline. 

The behaviour of the bed will now be deter- 
mined by the function f(a, I). Denote the mean 
or first moment of _/(a, !) by ml(a). Then p = 
[nr,(a)/a] is the mean equivalent path length 
per unit thickness of bed. The second moment 
is denoted by WQ(LZ) = CT: and the third moment 

by Q(Q). 
If we now consider a plane in the bed, distant 

.X from the boundary, we can determine the total 
equivalent path length A, along a streamline 
between the boundary and any point on the 
plane. If the determinations are made at each 
point on the plane on a grid of mesh equal to at 
least a, then these values of A, will be independent 
and distributed with a frequency function which 
we denote by f(x, 1). Since the quantity /I, is 
made up of n independent quantities A, where 
n = x/u, and Xa is randomly distributed accord- 
ing to the function f(u, 1) then the distribution 
(x, !) can be derived from the distribution of 

f(a, I). In particular, the first three moments of 
f(x, I) are given by n times the corresponding 
moment of .f(u, I) [4]. Thus for x > a. these 
moments should increase linearly with s. In 
an easily understood notation we can write 

177&y) = ? cf 
a 

II p-y. 

The mean or expected value of the temperature 
at the plane x, and at time t, F(x, t), can now be 
found, using equation (5). Since the temperature 
at a point is determined by X and l. and since a 
path length between 1 and I+ dl occurs with 
probability ,Nx, I) dl then the weighted mean or 
expected value of temperature is given by 

=J 
% 
--03 

In practice,,f(x, I) is zero for negative values of 1. 
and hence 

T can be derived not only in terms of the input 
temperature conditions, as above, but also in 
terms of the mean temperature behaviour at any 
plane upstream from x. 

Consider two adjacent slabs in the bed, of 
thickness dl and d,, the combined slab having a 
thickness d = 4 + d2, 

Let a typical streamline have equivalent path 
lengths l, and I, in the two slabs, the combined 
path length being 1. Then by the law of addition 
of two independent variables [4] 

_f(d, I) =: c J’ f(4, 4).fi4, 1 4) dl, ( 7) 
-- co 

since I1 and 1, are independent. 
From equation (6) above 

since we may integrate over all values of I, and I*. 
instead of using i1 and 1. By equation (6) 

Hence the above expression becomes 

J 
Wd 

T(d, f) ::: 
- J_ 

.f(dz, I,) 7 dI, t - $1 dl,. 
f 

If complete mixing were to take place at the 
plane separating the two slabs (X = d,), so that 
all air entering the second slab would be at the 
mean temperature T(d,, t), then the resulting 
value of T(d, + d,, t) would be exactly the same 
as T((d, t) above. Thus complete lateral mixing 
at any plane in the bed has no effect on the mean 
temperature downstream. This justifies our 
neglect of lateral conduction or mixing. 

The reason why lateral conduction plays no 
part in this model is that the speed of a signal 
varies randomly along the length of a single 
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streamline. Hence a signal transferred rapidly, 
say, from the boundary to a particular cross 
section along a certain streamline, may be 
transferred either rapidly or slowly to further 
cross sections, and the probabilities will not be 
changed by conduction to adjacent streamlines. 

The situation differs in this respect from that of 
convective dispersion in a cylindrical pipe [5], 
where the velocity along a single streamline 
will be consistent along its whole length, resulting 
in a dispersive mechanism which is retarded by 
lateral transfer. 

If 

STEP-FUNCTION INPUT 

then 

zcz A Ytf(~, f) dl. 
J 

(8) 
0 

Now the probability that a particular path 

terminating at x has an equivalent length less 
than I is given by the cumulative distribution 
function, which we denote by R’((x, I), where 
F(x, I) = S:,f(x, I’) dl’. Hence the measurement 
of T(x, t) gives an estimate of A F(x, Vt). If 
T at any plane is plotted against time, and the 
resultant curves differentiated, a direct measure 
of ,f(x, I) is obtained. Fig. 2 shows ,f(x, 1) as 
estimated in this way at three different values of 
x, using the equipment described in Part I, and 
using an air speed through the bed of 10 cm/s. 

SINUSOIDAL TEMPERATURE INPUT 

If To(r) is the real part of A ei”t, then 

J 

m 
7+(x, t) = A f(x, I) eMt-U/f’)1 dl 

--co 

= A eiot 
J 

co f(x, 1) e-f(wl/v) dl. (9) 
--m 

Hence T at any plane will be a sinusoidal func- 
tion of time with the frequency of the input 
signal, and with phase and amplitude given by 
the integral in the above expression, which we 
will denote by B(x) e-@(z). 

X= 1.0 cm 

0 4 8 12 16 20 24 28 32 36 40 44 40 52 

EQUIVALENT PATH LENGTH IN AIR (m) (lj 

FIG. 2. Estimates of path-length distributions in bed of terylene fibres, obtained from behaviour with 
step-function temperature input. 
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The amplitude B(X) is given by 

and 0(x) is determined 
inary and real parts 

by the ratio of the imag- 

I 
,fs. I) sin :d/ 

Because of the particular way in which f(s. j) 
depends on x, it can be shown that e(x) increases 
linearly with x. Let a typical streamline have an 
equivalent length II between the planes .Y = 0 
and x = 4, and an equivalent length I2 between 
the planes s = dl and s = d, Lm (I,. Let I, -+-- I3 
= 1. Then 

Note that this expression is a Fourier transform 
of the function f(dl $ d,, I) which is itself a 
faltung of the functions,f(d,, I) andf(dZ, I). 

Hence by a well-known theorem [6], 

B(d, + d,) e-iH(dl-‘l,) 

= B(d,) e-is@,) B(d,) @‘(‘I,). 

Thus the phase angle at any time changes linearly 
with x, and the fractional change in amplitude 
per unit change in x is constant down the bed. 
These results show that a sinusoidal input 
produces a sinusoidal progressive wave for T 
within the bed, whose amplitude decreases 
exponentially with s. 

Put x = 1; then 

a= ; log .f’(l, I) co,;,! d/)l 

+ ,f(l, I) sin 

and 

In the special case of a uniform bed, in which 
a slab of unit thickness contains paths all of 
equal equivalent length C/S 

and 

In this case substitution above shows that 
a --_ 0 and (~IT/A) = (WC/S!‘), and the results 
reduce to those of the idealized case. 

It is worth noting that the above expressions 
for b and h involve the characteristics of the 
bed and the parameter w/V ahich depends on 
the input conditions. 

NOM’ 
w 2n 

V wavelength in air’ 

hence both the wavelength and attenuation in 
the bed depend only on the wavelength of the 
input signal in air, and it follows that the 
attenuation will be determined by the wave- 
length measured in the bed. 

DISCUSSIOl\i 

The model described here was developed in 
order to explain the results obtained in Paper I 
[I], and is believed to present a truer picture of 
the physical conditions governing heat transfer 
in textile beds. The predictions of the model may 
be tested against the data of Part 1 as follows: 

( 1) This model gives a plausible explanation of 
why heat transfer appears less efficient than 
expected from existing theory [I]. The 
previous treatment fails, not because the 
single fibre behaviour is different from that 
in an air stream, but because the bed as a 
whole does not conform to the established 
model. 

(2) This model predicts that the attenuation with 
distance of a sinusoidal input signal in 3 
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FIG. 3. Relation between attenuation and wavelength for sinusoidal input. 
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FIG. 4. Apparent behaviour of moments. 
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particular bed depends only on the wave- 
length in the bed. The attenuation for each 
experiment is plotted against wavelength in 
Fig. 3, and it can be seen that the points 
lie close to an single curve, as predicted. 
The existing theory predicts a dependence on 
k, Sr and w as in equation (12) of Part 1. 
which was not borne out by experiment. 
It was found necessary to make h approxi- 
mately proportional to I/W for a given air 
flow. in order to fit the data. 

(3) If a step function temperature input is 
applied, the measurement of rf; at a plane 
allows us to calculate thedistribution function 
as in Fig. 2. and its moments. Hence we can 
test the prediction that the first three moments 
increase linearly with s. Fig. 4 shows the 
moments plotted against X, and it can be 
seen that the prediction is not borne out too 
well for the second and third moment. There 
are several possible reasons for this. 

(a) The input was a poor step-function. and 
had a long tail which made estimation of 
the higher moments inaccurate. 

(b) The test was made at low air flow, so that 
the original assumption (3) may not hold, 
and longitudinal conductivity in the air 
could be significantly large compared 
with heat transferred by convection. 

SUMMARY 

The view presented here is that the overall 
heat transfer in beds of textile fibres is governed 
by irregularities in the flow. According to this 
view, heat transfer to individual fibres is so 
rapid that the heat-transfer coeflicient has only a 
secondary influence on the large scale behaviour 
of the bed. Instead, the picture is that of a signal 
entering the bed and losing coherence due 
to the inhomogeneity of the medium through 
which it passes. The precise manner of depen- 
dence on the bed structure has not yet been 
investigated. This mechanism may be of some 
importance in other situations where either local 
heat or mass transfer [2. 71, or longitudinal con- 
ductivity [8] has previously been assumed to bc 
the sole important factor. 
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